Long-Term Persistence of Yersinia pseudotuberculosis in Entomopathogenic Nematodes
نویسندگان
چکیده
Entomopathogenic nematodes (EPNs) are small worms whose ecological behaviour consists to invade, kill insects and feed on their cadavers thanks to a species-specific symbiotic bacterium belonging to any of the genera Xenorhabdus or Photorhabdus hosted in the gastro-intestinal tract of EPNs. The symbiont provides a number of biological functions that are essential for its EPN host including the production of entomotoxins, of enzymes able to degrade the insect constitutive macromolecules and of antimicrobial compounds able to prevent the growth of competitors in the insect cadaver. The question addressed in this study was to investigate whether a mammalian pathogen taxonomically related to Xenorhabdus was able to substitute for or "hijack" the symbiotic relationship associating Xenorhabdus and Steinernema EPNs. To deal with this question, a laboratory experimental model was developed consisting in Galleria mellonella insect larvae, Steinernema EPNs with or without their natural Xenorhabdus symbiont and Yersinia pseudotuberculosis brought artificially either in the gut of EPNs or in the haemocoel of the insect larva prior to infection. The developed model demonstrated the capacity of EPNs to act as an efficient reservoir ensuring exponential multiplication, maintenance and dissemination of Y. pseudotuberculosis.
منابع مشابه
Metapopulation dynamics override local limits on long-term parasite persistence.
A simple null model, particularly germane to small and vulnerable organisms such as parasites, is that local conditions set a stage upon which larger-scale dynamics play out. Soil moisture strongly influences survival of entomopathogenic nematodes (EPN), which in turn drive trophic cascades by protecting vegetation from root-feeding herbivores. In this study, we examine the mechanisms responsib...
متن کاملYersinia enterocolitica infection and tcaA-dependent killing of Caenorhabditis elegans.
Caenorhabditis elegans is a validated model to study bacterial pathogenicity. We report that Yersinia enterocolitica strains W22703 (biovar 2, serovar O:9) and WA314 (biovar 1B, serovar O:8) kill C. elegans when feeding on the pathogens for at least 15 min before transfer to the feeding strain Escherichia coli OP50. The killing by Yersinia enterocolitica requires viable bacteria and, in contras...
متن کاملSerotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis.
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis fo...
متن کاملReprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis
We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes tr...
متن کاملRequirement of the Yersinia pseudotuberculosis effectors YopH and YopE in colonization and persistence in intestinal and lymph tissues.
The gram-negative enteric pathogen Yersinia pseudotuberculosis employs a type III secretion system and effector Yop proteins that are required for virulence. Mutations in the type III secretion-translocation apparatus have been shown to cause defects in colonization of the murine cecum, suggesting roles for one or more effector Yops in the intestinal tract. To investigate this possibility, isog...
متن کامل